Primitive Polynomials Modulo 2

This table lists the first 100 primitive polynomials mod 2.

(1, 0) (2, 1, 0) (3, 1, 0) (4, 1, 0) (5, 2, 0)
(6, 1, 0) (7, 1, 0) (8, 4, 3, 2. 0) (9, 4, 0) (10, 3, 0)
(11, 2, 0) (12, 6. 4. 1. 0) (13, 4, 3, 1, 0) (14, 5, 3, 1, 0) (15, 1. 0)
(16, 5, 3, 2, 0) (17, 3, 0) (18, 5, 2, 1, 0) (19, 5, 2, 1, 0) (20, 3, 0)
(21. 2, 0) (22, 1, 0) (23, 5, 0) (24, 4, 3, 1, 0) (25, 3, 0)
(26, 6, 2, 1. 0) (27, 5, 2, 1, 0) (28, 3, 0) (29, 2, 0) (30, 6, 4, 1, 0)
(31, 3, 0) (32, 7, 5, 3, 2, 1, 0) (33, 6, 4, 1, 0) (34, 7, 6, 5, 2, 1, 0) (35, 2, 0)
(36, 6, 5, 4, 2, 1, 0) (37, 5, 4, 3, 2, 1, 0) (38, 6, 5, 1, 0) (39, 4, 0) (40, 5, 4 3, 0)
(41, 3, 0) (42, 5, 4, 3, 2, 1, 0) (43, 6, 4, 3, 0) (44, 6, 5, 2, 0) (45, 4, 3, 1, 0)
(46, 8, 5, 3, 2, 1, 0) (47, 5, 0) (48, 7, 5, 4, 2, 1, 0) (49, 6, 5, 4, 0) (50, 4, 3, 2, 0)
(51, 6, 3. 1, 0) (52, 3, 0) (53, 6, 2, 1, 0) (54, 6. 5, 4, 3, 2, 0) (55, 6, 2, 1, 0)
(56, 7, 4, 2, 0) (57, 5, 3, 2, 0) (58, 6, 5, 1, 0) (59, 6, 5, 4, 3. 1, 0) (60, 1, 0)
(61, 5, 2, 1, 0) (62. 6. 5, 3, 0) (63. 1, 0) (64, 4, 3, 1, 0) (65, 4, 3, 1, 0)
(66, 8. 6, 5, 3. 2, 0) (67, 5, 2, 1, 0) (68, 7, 5, 1, 0) (69. 6, 5, 2, 0) (70, 5, 3, 1, 0)
(71, 5, 3, 1, 0) (72, 6, 4, 3. 2, 1, 0) (73, 4, 3, 2, 0) (74, 7, 4, 3, 0) (75, 6, 3. 1, 0)
(76. 5, 4, 2, 0) (77, 6, 5, 2, 0) (78, 7, 2, 1, 0) (79, 4, 3, 2, 0) (80, 7, 5, 3, 2, 1, 0)
(81, 4 0) (82, 8, 7, 6, 4, 1, 0) (83, 7, 4, 2, 0) (84, 8. 7, 5, 3, 1. 0) (85, 8, 2, 1, 0)
(86, 6. 5, 2, 0) (87, 7. 5, 1, 0) (88, 8. 5, 4, 3, 1, 0) (89, 6, 5, 3, 0) (90, 5, 3, 2, 0)
(91, 7, 6, 5, 3, 2, 0) (92, 6, 5, 2, 0) (93, 2, 0) (94, 6, 5, 1. 0) (95, 6, 5, 4, 2, 1, 0)
(96, 7, 6, 4. 3, 2. 0) (97, 6, 0) (98, 7, 4, 3, 2, 1, 0) (99, 7, 5, 4, 0) (100, 8, 7, 2, 0)

From E.J. Watson, Mathematics of Computation, vol 16, 1962, pp. 368-369


Rational Commerce Ltd. +44 (0)20 8691 2089 18 March, 2007 13:52:21